References
Ali, U., Karim, K. J. B. A. & Buang, N. A. A review of the properties and applications of poly (methyl methacrylate) (PMMA). Polym. Rev. 55, 678–705 (2015).
Rösler, A., Vandermeulen, G. W. M. & Klok, H.-A. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv. Drug Deliv. Rev. 64, 270–279 (2012).
Perumal, S., Atchudan, R. & Lee, W. A review of polymeric micelles and their applications. Polymers 14, 2510 (2022).
Webster, O. W. The discovery and commercialization of group transfer polymerization. J. Polym. Sci. A 38, 2855–2860 (2000).
Destarac, M. Controlled radical polymerization: industrial stakes, obstacles and achievements. Macromol. React. Eng. 4, 165–179 (2010).
Truong, N. P., Jones, G. R., Bradford, K. G. E., Konkolewicz, D. & Anastasaki, A. A comparison of RAFT and ATRP methods for controlled radical polymerization. Nat. Rev. Chem. 5, 859–869 (2021).
Shanmugam, S. & Matyjaszewski, K. in Reversible Deactivation Radical Polymerization: Mechanisms and Synthetic Methodologies Vol. 1 (eds Matyjaszewski, K. et al.) 1–39 (American Chemical Society, 2018).
Ntetsikas, K., Ladelta, V., Bhaumik, S. & Hadjichristidis, N. Quo vadis carbanionic polymerization? ACS Poly. Au 3, 158–181 (2023).
Hirao, A., Goseki, R. & Ishizone, T. Advances in living anionic polymerization: from functional monomers, polymerization systems, to macromolecular architectures. Macromolecules 47, 1883–1905 (2014).
Hadjichristidis, N., Iatrou, H., Pitsikalis, M. & Mays, J. Macromolecular architectures by living and controlled/living polymerizations. Prog. Polym. Sci. 31, 1068–1132 (2006).
Ménard, A. D. & Trant, J. F. A review and critique of academic lab safety research. Nat. Chem. 12, 17–25 (2020).
Rathman, T. ‘L.’ & Schwindeman, J. A. Preparation, properties, and safe handling of commercial organolithiums: alkyllithiums, lithium sec-organoamides, and lithium alkoxides. Org. Process Res. Dev. 18, 1192–1210 (2014).
Slavík, P., Trowse, B. R., O’Brien, P. & Smith, D. K. Organogel delivery vehicles for the stabilization of organolithium reagents. Nat. Chem. 15, 319–325 (2023).
Ratkanthwar, K., Hadjichristidis, N. & Mays, J. W. in Anionic Polymerization: Principles, Practice, Strength, Consequences and Applications (eds Hadjichristidis, N. & Hirao, A.) 19–60 (Springer, 2015).
Baskaran, D. & Müller, A. H. E. Anionic vinyl polymerization—50 years after Michael Szwarc. Prog. Polym. Sci. 32, 173–219 (2007).
Grubbs, R. B. & Grubbs, R. H. 50th anniversary perspective: living polymerization—emphasizing the molecule in macromolecules. Macromolecules 50, 6979–6997 (2017).
Baskaran, D. Strategic developments in living anionic polymerization of alkyl (meth)acrylates. Prog. Polym. Sci. 28, 521–581 (2003).
Varshney, S. K., Hautekeer, J. P., Fayt, R., Jerome, R. & Teyssie, P. Anionic polymerization of (meth)acrylic monomers. 4. Effect of lithium salts as ligands on the “living” polymerization of methyl methacrylate using monofunctional initiators. Macromolecules 23, 2618–2622 (1990).
Zune, C., Archambeau, C., Dubois, P. & Jérôme, R. Effect of the solvent polarity on the living ligated anionic polymerization of tert-butyl methacrylate and copolymerization with methyl methacrylate. J. Polym. Sci. A 39, 1774–1785 (2001).
Vlček, P. & Lochmann, L. Anionic polymerization of (meth)acrylate esters in the presence of stabilizers of active centres. Prog. Polym. Sci. 24, 793–873 (1999).
Lochmann, L. & Lím, D. Preparation and properties of pure lithio esters of some carboxylic acids. J. Organomet. Chem. 50, 9–16 (1973).
Carlotti, S., Desbois, P., Warzelhan, V. & Deffieux, A. Retarded anionic polymerization (RAP) of styrene and dienes. Polymer 50, 3057–3067 (2009).
Li, Z. et al. Anionic living polymerization of alkyl methacrylate at ambient temperature and its mechanism research. J. Polym. Sci. A 57, 1130–1139 (2019).
Kralisch, D., Ott, D. & Gericke, D. Rules and benefits of life cycle assessment in green chemical process and synthesis design: a tutorial review. Green Chem. 17, 123–145 (2015).
Webster, O. W. in New Synthetic Methods Vol. 167 (eds Abe, A. et al.) 1–34 (Springer, 2003).
McGraw, M. L. & Chen, E. Y.-X. Lewis pair polymerization: perspective on a ten-year journey. Macromolecules 53, 6102–6122 (2020).
Zhang, Y., Miyake, G. M. & Chen, E. Y.-X. Alane-based classical and frustrated Lewis pairs in polymer synthesis: rapid polymerization of MMA and naturally renewable methylene butyrolactones into high-molecular-weight polymers. Angew. Chem. Int. Ed. 49, 10158–10162 (2010).
Zhang, Y. et al. Lewis pair polymerization by classical and frustrated Lewis pairs: acid, base and monomer scope and polymerization mechanism. Dalton Trans. 41, 9119–9134 (2012).
Sanford, M. J., Van Zee, N. J. & Coates, G. W. Reversible-deactivation anionic alternating ring-opening copolymerization of epoxides and cyclic anhydrides: access to orthogonally functionalizable multiblock aliphatic polyesters. Chem. Sci. 9, 134–142 (2018).
Varghese, J. K. et al. A new role for CO2: controlling agent of the anionic ring-opening polymerization of cyclic esters. Macromolecules 50, 6752–6761 (2017).
Abel, B. A., Snyder, R. L. & Coates, G. W. Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals. Science 373, 783–789 (2021).
Corrigan, N. et al. Reversible-deactivation radical polymerization (controlled/living radical polymerization): from discovery to materials design and applications. Prog. Polym. Sci. 111, 101311 (2020).
Ouchi, M. & Sawamoto, M. Sequence-controlled polymers via reversible-deactivation radical polymerization. Polym. J. 50, 83–94 (2018).
Uchiyama, M., Ohira, N., Yamashita, K., Sagawa, K. & Kamigaito, M. Proton transfer anionic polymerization with C-H bond as the dormant species. Nat. Chem. 16, 1630–1637 (2024).
Sakakura, T., Choi, J.-C. & Yasuda, H. Transformation of carbon dioxide. Chem. Rev. 107, 2365–2387 (2007).
Kong, D., Moon, P. J., Lui, E. K. J., Bsharat, O. & Lundgren, R. J. Direct reversible decarboxylation from stable organic acids in dimethylformamide solution. Science 369, 557–561 (2020).
Naumann, S., Schmidt, F. G., Schowner, R., Frey, W. & Buchmeiser, M. R. Polymerization of methyl methacrylate by latent pre-catalysts based on CO2-protected N-heterocyclic carbenes. Polym. Chem. 4, 2731–2740 (2013).
Wadhwa, K. et al. Influence of substitution of various functional groups on inhibition efficiency of TEMPO analogues on styrene polymerization. J. Polym. Res. 24, 201 (2017).
Hunter, D. H., Hamity, M., Patel, V. & Perry, R. A. Crown ether catalysis of decarboxylation: a general survey of reactivity and detailed analysis of the triphenylacetate anion. Can. J. Chem. 56, 104–113 (1978).
Kottisch, V., Gentekos, D. T. & Fors, B. P. “Shaping” the future of molecular weight distributions in anionic polymerization. ACS Macro Lett. 5, 796–800 (2016).
Liu, X., Jiang, C., Ren, C. & Li, Z. Controlled ring-opening polymerization of epoxides catalyzed by metal-free phosphazenium salts (P5+): using carboxylic acid as an initiator to prepare esterified polyethers. ACS Appl. Polym. Mater. 6, 896–904 (2023).
Sivakumar, K. et al. A fluorogenic 1,3-dipolar cycloaddition reaction of 3-azidocoumarins and acetylenes. Org. Lett. 6, 4603–4606 (2004).
Binder, W. H. & Sachsenhofer, R. ‘Click’ chemistry in polymer and materials science. Macromol. Rapid Commun. 28, 15–54 (2007).
Kaur, J., Saxena, M. & Rishi, N. An overview of recent advances in biomedical applications of click chemistry. Bioconjugate Chem. 32, 1455–1471 (2021).
Anderson, C. D., Shea, K. J. & Rychnovsky, S. D. Strategies for the generation of molecularly imprinted polymeric nitroxide catalysts. Org. Lett. 7, 4879–4882 (2005).
Bugnon, L., Morton, C. J. H., Novak, P., Vetter, J. & Nesvadba, P. Synthesis of poly(4-methacryloyloxy-TEMPO) via group-transfer polymerization and its evaluation in organic radical battery. Chem. Mater. 19, 2910–2914 (2007).
Amorati, R., Pedulli, G. F., Pratt, D. A. & Valgimigli, L. TEMPO reacts with oxygen-centered radicals under acidic conditions. Chem. Commun. 46, 5139–5141 (2010).
Downie, I. M., Earle, M. J., Heaney, H. & Shuhaibar, K. F. Vilsmeier formylation and glyoxylation reactions of nucleophilic aromatic compounds using pyrophosphoryl chloride. Tetrahedron 49, 4015–4034 (1993).
Armesto, D. et al. Novel photoreactions of 2-aza-1,4-dienes in the triplet excited state and via radical-cation intermediates. 2-aza-di-π-methane rearrangements yielding cyclopropylimines and N-vinylaziridines. J. Org. Chem. 68, 6661–6671 (2003).
Xing, W.-L., Wang, J.-X., Fu, M.-C. & Fu, Y. Efficient decarboxylative/defluorinative alkylation for the synthesis of gem-difluoroalkenes through an SN2’-type route. Chin. J. Chem. 40, 323–328 (2022).
Devasthale, P. et al. Cyclobutane- and azetidine-containing mono and spirocyclic compounds as alpha V integrin inhibitors. International patent WO2018089355A1 (2018).
Cho, D. et al. Temperature gradient interaction chromatography and MALDI-TOF mass spectrometry analysis of stereoregular poly(ethyl methacrylate)s. Anal. Chem. 74, 1928–1931 (2002).
Jacky, P., Easley, A. & Fors, B. Data from: Controlled anionic polymerization mediated by carbon dioxide. Cornell University eCommons Repository https://doi.org/10.7298/s733-8m37 (2025).